Project description

Protein structure is essential for understanding their function as well as for developing drugs targeting proteins. Recently, a deep learning method that can predict the structure of most proteins was made freely available and a database with predicted structure was released. However, proteins do not act alone – they act together with other proteins. Therefore, the next major challenge is to use these types of methods for predicting protein–protein interactions. Initial studies from us have shown that it is possible to predict accurate structures of a large part of dimeric proteins using either a modified version of AlphaFold2 or AlphaFold-multimer. However, there are still many proteins that cannot be built accurately, nor are we able to always distinguish interacting from non-interacting protein pairs and to build larger complexes accurately is still an unsolved problem. In this project, we are recruiting two postdocs to leverage recent advances in the field of machine learning to build better deep-learning models for predicting protein–protein interactions and to apply these methods to biologically relevant problems.

Environment

The Elofsson group is located at the Science for Life Laboratory. Elofsson has worked on protein structure predictions for more than two decades. He has worked on various techniques, both using machine learning and other computational techniques. His most important contributions for this work are the methods he has developed to identify the quality of protein models, Pcons and various versions of ProQ. The group consists currently of 5 PhD students and one senior researcher.

Azizpour’s group is part of the KTH division of Robotics, Perception and Learning. He has extensive experience in computer vision and deep learning. The main research directions pursued in Azizpour’s group have direct relevance to this project which includes robustness and estimation of uncertainty, transfer learning including knowledge distillation techniques, non-standard deep networks e.g., graph networks and transformers, and interpretable deep learning. Furthermore, the group has extensive experience in deploying large experiments in GPU clusters. It consists of 4 PhD students, 1 postdoc, and several master students/interns.

This position is part of a joint collaboration between the two largest research programs in Sweden, the Wallenberg AI, Autonomous Systems and Software Program (WASP) and the SciLifeLab and Wallenberg National Program for Data-Driven Life Science (DDLS), with the ultimate goal of solving ground-breaking research questions across disciplines.

More Information and Application

View all positions
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners. View more
Cookies settings
Accept
Privacy & Cookie policy
Privacy & Cookies policy
Cookie name Active
The WASP website wasp-sweden.org uses cookies. Cookies are small text files that are stored on a visitor’s computer and can be used to follow the visitor’s actions on the website. There are two types of cookie:
  • permanent cookies, which remain on a visitor’s computer for a certain, pre-determined duration,
  • session cookies, which are stored temporarily in the computer memory during the period under which a visitor views the website. Session cookies disappear when the visitor closes the web browser.
Permanent cookies are used to store any personal settings that are used. If you do not want cookies to be used, you can switch them off in the security settings of the web browser. It is also possible to set the security of the web browser such that the computer asks you each time a website wants to store a cookie on your computer. The web browser can also delete previously stored cookies: the help function for the web browser contains more information about this. The Swedish Post and Telecom Authority is the supervisory authority in this field. It provides further information about cookies on its website, www.pts.se.
Save settings
Cookies settings