The Department of Computing science, Umeå Unviersity, seeks a postdoc who will work with trustworthy federated learning. The employment is full-time for two years with starting date by agreement.

Project description and working tasks

The rapid increase of autonomous systems, connected devices, and distributed applications pose challenges in dealing with petabytes of data in diverse resource-constrained environments. Federated machine learning (FML) is collaborative learning to handle these problems without sharing data with centralized servers. However, several emerging threats target FML training, learning, and inference to fail or mislead models at early learning rounds. Attackers aim to break trustworthiness under different threat models such as insiders-outsiders attacks, semi-honest or fully malicious participants, and attacks in training, learning, or inference phases. As a result, the learning models fail to provide acceptable performance.

Therefore, this project aims to develop and implement trustworthy federated learning algorithms for scarce and diverse non-iid (independent identically distributed) data under non-standard and adversarial settings, which are ideally suited for constraint environments and edge computing infrastructures. These goals can be achieved by inducing unique features in federated learning algorithms such as decentralized training, optimal device selection, secure learning and inference, fault-tolerance against failures and attacks, as well as resilient, fair and robust models. The ambition is to validate them in classical non-standard settings and apply them to solutions for constraint environments (i.e., Industrial Internet of Things (IIoT), healthcare systems) and edge infrastructures. Potentially, teaching up to a maximum of 20% can be included in the work tasks.

More Information and Application

View all positions
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners. View more
Cookies settings
Privacy & Cookie policy
Privacy & Cookies policy
Cookie name Active
The WASP website uses cookies. Cookies are small text files that are stored on a visitor’s computer and can be used to follow the visitor’s actions on the website. There are two types of cookie:
  • permanent cookies, which remain on a visitor’s computer for a certain, pre-determined duration,
  • session cookies, which are stored temporarily in the computer memory during the period under which a visitor views the website. Session cookies disappear when the visitor closes the web browser.
Permanent cookies are used to store any personal settings that are used. If you do not want cookies to be used, you can switch them off in the security settings of the web browser. It is also possible to set the security of the web browser such that the computer asks you each time a website wants to store a cookie on your computer. The web browser can also delete previously stored cookies: the help function for the web browser contains more information about this. The Swedish Post and Telecom Authority is the supervisory authority in this field. It provides further information about cookies on its website,
Save settings
Cookies settings