Umeå University, the Department of Computing Science, is seeking candidates for a postdoc position in resource-frugal federated learning for preserving security and privacy with focus on edge infrastructures.

Project Description
The rapid increase of autonomous systems and applications are providing challenges in dealing with petabytes of data. These size and multidimensional features make the machine learning models larger and more complex. Classical centralized approaches to learning and inference fail to address the problems of resource and storage limitations, network bandwidth constraints, tail latency, energy-efficiency, and many more. This project focuses on design and implementation of resource-frugal and robust federated learning algorithms for preserving security and privacy, which are ideally suited for big-data and edge infrastructures.

This project leverages federated learning techniques for advancing state-of-the-art machine learning algorithms where data is geographically distributed and sensitive. Federated learning algorithms empower large-scale distributed nodes, i.e., mobile devices to train globally shared models without divulging the privacy of raw data. Sophisticated attackers leverage the limitations of data, model, target class(es), resources, the communication path for the deception of federated learning algorithms and also to violate security and privacy. By creating unique features (e.g., decentralized optimization, heterogeneity, cost-effective communication architecture, model agnostic learning and robustness) of federated learning algorithms, this project addresses the problems of limited resources, computation, communication, and energy-efficiency for preserving security and privacy. As a result, these features improve the safeguard of services and diagnosis ability of edge infrastructures.

More Information and Application

View all positions
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners. View more
Cookies settings
Privacy & Cookie policy
Privacy & Cookies policy
Cookie name Active
The WASP website uses cookies. Cookies are small text files that are stored on a visitor’s computer and can be used to follow the visitor’s actions on the website. There are two types of cookie:
  • permanent cookies, which remain on a visitor’s computer for a certain, pre-determined duration,
  • session cookies, which are stored temporarily in the computer memory during the period under which a visitor views the website. Session cookies disappear when the visitor closes the web browser.
Permanent cookies are used to store any personal settings that are used. If you do not want cookies to be used, you can switch them off in the security settings of the web browser. It is also possible to set the security of the web browser such that the computer asks you each time a website wants to store a cookie on your computer. The web browser can also delete previously stored cookies: the help function for the web browser contains more information about this. The Swedish Post and Telecom Authority is the supervisory authority in this field. It provides further information about cookies on its website,
Save settings
Cookies settings