Information About the Project

The position is announced at Chalmers University of Technology.

Learning and Leveraging Rich Priors for Factorization Problems
In this project we are interested in developing methods that combine traditional (parametric) mathematical formulations induced by domain expertise with (non-parametric) models learned from examples. Parametric models inject domain knowledge into learning-based approaches and have therefore the potential to massively reduce the necessary amount of training data. Additionally, the output can be constrained e.g. to be physically plausible, which is difficult to guarantee with pure learning-based architectures. At the same time, being able to incorporate learned priors has the potential to regularize problems where a physical model is not sufficient to guarantee a well posed formulation. From a theoretical point of view we are interested in results that characterize formulations in terms of their expressiveness and generalization as well as developing efficient inference approaches.

Our main application of interest are factorization-based problems, in particular non-rigid structure-from-motion (NRSfM), which aims to infer 3D models of dynamic scenes or objects from videos or multiple images. In contrast to its rigid counterpart, NRSfM is far less mature and it is inherently an ill posed problem requiring suitable priors that disambiguate the effects of camera motion and object deformation. Hence, this project enables research at the intersection of 3D computer vision, factorization methods and machine learning.

More Information and Application

View all positions
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners. View more
Cookies settings
Privacy & Cookie policy
Privacy & Cookies policy
Cookie name Active
The WASP website uses cookies. Cookies are small text files that are stored on a visitor’s computer and can be used to follow the visitor’s actions on the website. There are two types of cookie:
  • permanent cookies, which remain on a visitor’s computer for a certain, pre-determined duration,
  • session cookies, which are stored temporarily in the computer memory during the period under which a visitor views the website. Session cookies disappear when the visitor closes the web browser.
Permanent cookies are used to store any personal settings that are used. If you do not want cookies to be used, you can switch them off in the security settings of the web browser. It is also possible to set the security of the web browser such that the computer asks you each time a website wants to store a cookie on your computer. The web browser can also delete previously stored cookies: the help function for the web browser contains more information about this. The Swedish Post and Telecom Authority is the supervisory authority in this field. It provides further information about cookies on its website,
Save settings
Cookies settings