Degree and subject: Licentiate in Electrical Engineering with specialization in Automatic Control

Speaker: Andreas Bergström

Opponent: Dr. Erik Leitinger, TU Graz

Supervisor: Prof. Fredrik Gustafsson

Co-supervisors: Assoc. Prof. Gustaf Hendeby and Assoc. Prof. Fredrik Gunnarsson

Language: English


The measurements of radio signals are commonly used for localization purposes where the goal is to determine the spatial position of one or multiple objects. In realistic scenarios, any transmitted radio signal will be affected by the environment through reflections, diffraction at edges and corners etc. This causes a phenomenon known as multipath propagation, by which multiple instances of the transmitted signal having traversed different paths are heard by the receiver. These are known as Multi-Path Components (MPCs). The direct path (DP) between transmitter and receiver may also be occluded, causing what is referred to as non-Line-of-Sight (non-LOS) conditions. As a consequence of these effects, the estimated position of the object(s) may often be erroneous.

This thesis focuses on how to achieve better localization accuracy by accounting for the above-mentioned multipath propagation and non-LOS effects. It is proposed how to mitigate these in the context of positioning based on estimation of the DP between transmitter and receiver. It is also proposed how to constructively utilize the additional information about the environment which they implicitly provide. This is all done in a framework wherein a given signal model and a map of the surroundings are used to build a mathematical model of the radio environment, from which the resulting MPCs are estimated.

First, methods to mitigate the adverse effects of multipath propagation and non-LOS conditions for positioning based on estimation of the DP between transmitter and receiver are presented. This is initially done by using robust statistical measurement error models based on aggregated error statistics, where significant improvements are obtained without the need to provide detailed received signal information. The gains are seen to be even larger with up-to-date real-time information based on the estimated MPCs.

Second, the association of the estimated MPCs with the signal paths predicted by the environmental model is addressed. This leads to a combinatorial problem which is approached with tools from multi-target tracking theory. A rich radio environment in terms of many MPCs gives better localization accuracy but causes the problem size to grow large — something which can be remedied by excluding less probable paths. Simulations indicate that in such environments, the single best association hypothesis may be a reasonable approximation which avoids the calculation of a vast number of possible hypotheses. Accounting for erroneous measurements is crucial but may have drawbacks if no such are occurring.

Finally, theoretical localization performance bounds when utilizing all or a subset of the available MPCs are derived. A rich radio environment allows for good positioning accuracy using only a few transmitters/receivers, assuming that these are used in the localization process. In contrast, in a less rich environment where basically only the DP/LOS components are measurable, more transmitters/receivers and/or the combination of downlink and uplink measurements are required to achieve the same accuracy. The receiver’s capability of distinguishing between multiple MPCs arriving approximately at the same time also affects the localization accuracy.

View all events
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners. View more
Cookies settings
Privacy & Cookie policy
Privacy & Cookies policy
Cookie name Active
The WASP website uses cookies. Cookies are small text files that are stored on a visitor’s computer and can be used to follow the visitor’s actions on the website. There are two types of cookie:
  • permanent cookies, which remain on a visitor’s computer for a certain, pre-determined duration,
  • session cookies, which are stored temporarily in the computer memory during the period under which a visitor views the website. Session cookies disappear when the visitor closes the web browser.
Permanent cookies are used to store any personal settings that are used. If you do not want cookies to be used, you can switch them off in the security settings of the web browser. It is also possible to set the security of the web browser such that the computer asks you each time a website wants to store a cookie on your computer. The web browser can also delete previously stored cookies: the help function for the web browser contains more information about this. The Swedish Post and Telecom Authority is the supervisory authority in this field. It provides further information about cookies on its website,
Save settings
Cookies settings