Welcome to Doctoral Defense of David Issa Mattos, PhD Software Engineering, Chalmers University of Technology

Date and Time. August 25, 13:00 – 17:00

Location: Room 473, Jupiter Building

Titel: On Experimentation in Software-Intensive Systems

Doctoral student: David Issa Mattos, PhD Software Engineering, Chalmers Universtity of Technology

Opponent:  Prof. Tom ́aˇs Bureˇs – Charles University, Czech Republic

Abstract

Delivering software that has value to customers is a primary concern of every software company. Prevalent in web-facing companies, controlled experiments are used to validate and deliver value in incremental deployments. At the same that web-facing companies are aiming to automate and reduce the cost of each experiment iteration, embedded systems companies are starting to adopt experimentation practices and leverage their activities on the automation developments made in the online domain.

This thesis has two main objectives. The first objective is to analyze how software companies can run and optimize their systems through automated experiments. This objective is investigated from the perspectives of the software architecture, the algorithms for the experiment execution and the experimentation process. The second objective is to analyze how non web-facing companies can adopt experimentation as part of their development process to validate and deliver value to their customers continuously. This objective is investigated from the perspectives of the software development process and focuses on the experimentation aspects that are distinct from web-facing companies.

The results presented in this thesis indicate that the trustworthiness in the experimentation process and the selection of algorithms still need to be addressed before automated experimentation can be used at scale in industry. The embedded systems industry faces challenges in adopting experimentation as part of its development process. In part, this is due to the low number of users and devices that can be used in experiments and the diversity of the required experimental designs for each new situation. This limitation increases both the complexity of the experimentation process and the number of techniques used to address this constraint.

View all events